Differentiation
Differentiability
Definition
We say that \( f : D \to \mathbb{R} \) is differentiable at \( x \) if the limit
\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]exists. We call \( f'(x) \) the derivative of \( f(x) \). If \( f'(x) \) exists for all \( x \in D \) then we say \( f \) is differentiable.
Differentiation and Continuity
Theorem
If \( f : D \rightarrow \mathbb{R} \) is differentiable at \( a \in D \) then \( f \) is continuous at \( a \).
Proof
We want to show that \(\lim_{x \to a}f(x) = f(a)\). But if \( x = a + h \) then this is the same as \(\lim_{h \to 0}f(a+h) = f(a)\). We will show that this is true by proving \(\lim_{h \to 0}(f(a+h) - f(a)) = 0\).
\[\lim_{h \to 0}(f(a+h) - f(a)) = \lim_{h \to 0}\frac{f(a+h) - f(a)}{h} \cdot h\] \[= \lim_{h \to 0}\frac{f(a+h) - f(a)}{h} \cdot \lim_{h \to 0}h\] \[= f'(a) \cdot 0\] \[= 0\]$\square$
Remarks
-
Note that this proof only makes sense when \( f'(a) \) exists, that is, when \( f \) is differentiable.
The converse to this theorem is not true.
The absolute value function
Theorem
The function \( f(x) = |x| \) is continuous, but not differentiable.
Proof
At the point \(a=0\) we have
\[ \lim_{x\to 0^{-}}|x|=0=\lim_{x\to 0^{+}}|x|\quad\text{ so }\quad\lim_{x\to 0}f(x)=0=f(0) \]
So the function is continuous.
We will now show that \(f(x)\) is not differentiable. Unsurprisingly,
the interesting thing happens when \(x=0\).
The expression \(\left.\frac{|h|}{h}\right|\) is not defined when \(h=0\) (but we don't care about this as \(h\) never equals zero in our limit). So
\[ \lim_{h\to 0^{-}}\frac{|h|}{h}=-1\qquad\text{ and }\qquad\lim_{h\to 0^{+}}\frac{|h|}{h}=1 \]These limits are not equal, so \(\lim_{h\to 0}\frac{|h|}{h}\) does not exist. So \(f(x)=|x|\) is not differentiable when \(x=0\).
$\square$
Differentiation of common functions
See the proof of many common functions under démonstration des fonctions dérivées.
Sum rule of differentiation
Theorem
If \(f\) and \(g\) are differentiable at \(x\) then
\[ (f+g)^{\prime}(x) = f^{\prime}(x) + g^{\prime}(x) \]Proof
We want to show that \((f+g)^{\prime}(x)\) exists and is equal to \(f^{\prime}(x)+g^{\prime}(x)\). Recall that
\[ f^{\prime}(x) = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \]so
\[ (f+g)^{\prime}(x) = \lim_{h\to 0}\frac{(f+g)(x+h)-(f+g)(x)}{h} \] \[ = \lim_{h\to 0}\frac{f(x+h)+g(x+h)-f(x)-g(x)}{h} \] \[ = \lim_{h\to 0}\frac{(f(x+h)-f(x))+(g(x+h)-g(x))}{h} \] \[ = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} + \frac{g(x+h)-g(x)}{h} \] \[ = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} + \lim_{h\to 0}\frac{g(x+h)-g(x)}{h} \] \[ = f^{\prime}(x) + g^{\prime}(x) \]Product rule of differentiation
Theorem
If \( f \) and \( g \) are differentiable at \( x \) then
\[ (fg)'(x) = f(x)g'(x) + f'(x)g(x) \]Proof
As for the sum rule, we want to show that \( (fg)'(x) \) exists and is equal to \( f(x)g'(x) + f'(x)g(x) \). Recall that
\[ (fg)'(x) = \lim_{h \to 0} \frac{(fg)(x+h)-(fg)(x)}{h} \] \[ = \lim_{h \to 0} \frac{f(x+h)g(x+h)-f(x)g(x)}{h} \] \[ = \lim_{h \to 0} \frac{f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x)}{h} \] \[ = \lim_{h \to 0} \frac{f(x+h)g(x+h)-f(x+h)g(x)}{h} + \frac{f(x+h)g(x)-f(x)g(x)}{h} \] \[ = \lim_{h \to 0} f(x+h)\frac{g(x+h)-g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}g(x) \] \[ = f(x)g'(x) + f'(x)g(x) \]Chain rule of differentiation
Theorem
If \( f \) and \( g \) are differentiable then
\[ (f \circ g)'(x) = f'(g(x))g'(x) \]Proof
\[ (f \circ g)'(x) = \lim_{h \to 0} \frac{(f \circ g)(x + h) - (f \circ g)(x)}{h} \] \[ = \lim_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{h} \] \[ = \lim_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{g(x + h) - g(x)} \cdot \frac{g(x + h) - g(x)}{h} \] \[ = \left( \lim_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{g(x + h) - g(x)} \right) \left( \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} \right) \] \[ = f'(g(x))g'(x) \]To justify this, we define \( H = g(x + h) - g(x) \), and equivalently \( g(x + h) = g(x) + H \). Note that
\[ \lim_{h \to 0} H = \lim_{h \to 0} g(x + h) - g(x) = g(x) - g(x) = 0 \]By making the substitutions we have that
\[ \left( \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \right) g'(x) = \left( \lim_{H \to 0} \frac{f(g(x) + H) - f(g(x))}{H} \right) g'(x) \] \[ = f'(g(x)) g'(x) \]Quotient rule of differentiation
Theorem
If \(f\) and \(g\) are differentiable at \(x\), then
\[ \left( \frac{f}{g} \right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \]Proof
TBD
Inverse functions
Definition
We say that \(g : D_g \rightarrow \mathbb{R}\) is the inverse function of \(f : D_f \rightarrow \mathbb{R}\) if for all \(x \in D_g\)
\[ (f \circ g)(x) = x = (g \circ f)(x) \]and if for all \(x \in D_f\) we have
\[ (g \circ f)(x) = x \]Remark
Note that in certain cases we might be interested in functions that are not defined over all of $\mathbb{R}$.
Differentiation of inverse functions
Proposition
If \( f^{-1} \) is differentiable at \( y \), then
\[ (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \]Proof
By the rule of composing functions, the derivative of \( f^{-1}(f(x)) \) is
\[ f'(x)(f^{-1})'(f(x)) \]but because \( f^{-1}(f(x)) = x \) this is also equal to 1. Hence
\[ f'(x)(f^{-1})'(f(x)) = 1 \]and so
\[ (f^{-1})'(f(x)) = \frac{1}{f'(x)} \]Now setting \( f(x) = y \) we have \( x = f^{-1}(y) \) and so
\[ (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \]$\square$