Collection des formules de trigonomètrie

$$ Formules\ de\ trigonomètrie$$
$$\sin^{2} \left( \alpha \right) +\cos^{2} \left( \alpha \right) =1$$ $$ \cos^{2} \left( \alpha \right) =\frac{1}{1+\tan^{2} \left( \alpha \right) } $$ $$ \tan \left( \alpha \right) =\frac{\sin \left( \alpha \right) }{\cos \left( \alpha \right) } $$ $$ \sin^{2} \left( \alpha \right) =\frac{\tan^{2} \left( \alpha \right) }{1+\tan^{2} \left( \alpha \right) } $$ $$1+\tan^{2} \left( \alpha \right) =\frac{1}{\cos^{2} \left( \alpha \right) } $$
$$\sin \left( -x\right) =-\sin \left( x\right) $$ $$\cos \left( -x\right) =\cos \left( x\right) $$ $$\tan \left( -x\right) =-\tan \left( x\right) $$ $$\sin \left( \pi -x\right) =\sin \left( x\right) $$ $$\cos \left( \pi -x\right) =-\cos \left( x\right) $$ $$\tan \left( \pi -x\right) =-\tan \left( x\right) $$ $$\sin \left( \pi +x\right) =-\sin \left( x\right) $$ $$\cos \left( \pi +x\right) =-\cos \left( x\right) $$ $$\tan \left( \pi +x\right) =\tan \left( x\right) $$
$$\sin \left( \frac{\pi }{2} -x\right) =\cos \left( x\right) $$ $$\cos \left( \frac{\pi }{2} -x\right) =\sin \left( x\right) $$ $$\tan \left( \frac{\pi }{2} -x\right) =\cot \left( x\right) $$ $$\sin \left( \frac{\pi }{2} +x\right) =\cos \left( x\right) $$ $$\cos \left( \frac{\pi }{2} +x\right) =-\sin \left( x\right) $$ $$\tan \left( \frac{\pi }{2} +x\right) =-\cot \left( x\right) $$
$$ \sin \left( x+y\right) =\sin \left( x\right) \cos \left( y\right) +\cos \left( x\right) \sin \left( y\right) $$ $$\sin \left( x-y\right) =\sin \left( x\right) \cos \left( y\right) -\cos \left( x\right) \sin \left( y\right) $$ $$ \cos \left( x+y\right) =\cos \left( x\right) \cos \left( y\right) -\sin \left( x\right) \sin \left( y\right) $$ $$\cos \left( x-y\right) =\cos \left( x\right) \cos \left( y\right) +\sin \left( x\right) \sin \left( y\right) $$ $$\tan \left( x+y\right) =\frac{\tan \left( x\right) +\tan \left( y\right) }{1-\tan \left( x\right) \tan \left( y\right) } $$ $$\tan \left( x-y\right) =\frac{\tan \left( x\right) -\tan \left( y\right) }{1+\tan \left( x\right) \tan \left( y\right) } $$
$$\sin \left( 2x\right) =2\cdot \sin \left( x\right) \cdot \cos \left( x\right) $$ $$\cos \left( 2x\right) =\cos^{2} \left( x\right) -\sin^{2} \left( x\right) $$ $$2\cos^{2} \left( x\right) =1+\cos^{2} \left( 2x\right) $$ $$2\sin^{2} \left( x\right) =1-\cos^{2} \left( 2x\right) $$
$$\sin \left( 2x\right) =\frac{2\tan \left( x\right) }{1+\tan^{2} \left( x\right) } $$ $$\cos \left( 2x\right) =\frac{1-\tan^{2} \left( x\right) }{1+\tan^{2} \left( x\right) } $$ $$\tan \left( 2x\right) =\frac{2\tan \left( x\right) }{1-\tan^{2} \left( x\right) } $$
$$\sin \left( 3x\right) =3\sin \left( x\right) -4\sin^{3} \left( x\right) $$ $$\cos \left( 3x\right) =-3\cos \left( x\right) +4\cos^{3} \left( x\right) $$
$$\sin \left( x\right) +\sin \left( y\right) =2\sin \left( \frac{x+y}{2} \right) \cos \left( \frac{x-y}{2} \right) $$ $$\sin \left( x\right) -\sin \left( y\right) =2\sin \left( \frac{x-y}{2} \right) \cos \left( \frac{x+y}{2} \right) $$ $$\cos \left( x\right) +\cos \left( y\right) =2\cos \left( \frac{x+y}{2} \right) \cos \left( \frac{x-y}{2} \right) $$ $$\cos \left( x\right) -\cos \left( y\right) =-2\sin \left( \frac{x+y}{2} \right) \sin \left( \frac{x-y}{2} \right) $$ $$\tan \left( x\right) +\tan \left( y\right) =\frac{\sin \left( x+y\right) }{\cos \left( x\right) \cos \left( y\right) } $$ $$\tan \left( x\right) -\tan \left( y\right) =\frac{\sin \left( x-y\right) }{\cos \left( x\right) \cos \left( y\right) } $$
$$\sin \left( x\right) \cos \left( y\right) =\frac{1}{2} \left[ \sin \left( x+y\right) +\sin \left( x-y\right) \right] $$ $$\cos \left( x\right) \cos \left( y\right) =\frac{1}{2} \left[ \cos \left( x+y\right) +\cos \left( x-y\right) \right] $$ $$\sin \left( x\right) \sin \left( y\right) =\frac{1}{2} \left[ \cos \left( x-y\right) -\cos \left( x+y\right) \right] $$