Eigenvectors and Eigenvalues
Eigenvector and Eigenvalue
Definition
Given an $\left( n \cdot m \right)$ matrix $A$ and an $n$-vector
$\overrightarrow{r}$, if $\overrightarrow{r^{\prime}} = Ar$ points in
the same direction as $\overrightarrow{r}$, i.e.
$\overrightarrow{r^{\prime}} = \lambda \overrightarrow{r}$ where
$\lambda$ is a real scalar, then $r$ is called an eigenvector of $A$
with real eigenvalue.
The cases $r = 0$ or $\lambda = 0$ are excluded from this definition.
Trivial Eigenvalues
Theorem
If the matrix equation $A \overrightarrow{v} = \lambda \overrightarrow{v}$, is inversible we have the trivial solutions:
$$ A = \begin{pmatrix} \lambda &0\\ 0&\lambda \end{pmatrix} $$and
$$ \overrightarrow{v} = \overrightarrow{0}$$Proof
$$ A \overrightarrow{v} = \lambda \overrightarrow{v} $$ $$ \Leftrightarrow \left( A - \lambda \mathbb{1} \right) \overrightarrow{v} = \overrightarrow{0}$$If $A$ is reversible:
$$ \Leftrightarrow A = \lambda \mathbb{1} \vee \overrightarrow{v} = (A- \lambda \mathbb{1})^{-1}\ \overrightarrow{0} $$ $$ \Leftrightarrow A = \begin{pmatrix} \lambda &0\\ 0&\lambda \end{pmatrix} \vee \overrightarrow{v} = \overrightarrow{0} $$$\square$
Characteristic equation
When solving for non trivial eigenvalues we call the following equation the characteristic equation:
$$ \det \left( A - \lambda \mathbb{1} \right) = 0$$Characteristic polynomial
We call $A - \lambda \mathbb{1}$, the characteristic polynomial of A, when solving for eigenvalues.
Non-trivial Eigenvalues
Theorem 1
If $(A - \lambda \mathbb{1})$ does not have an inverse, $\overrightarrow{v} \neq 0$.
Theorem 2
For the real scalar $\lambda$ to be an eigenvalue of the matrix $A$ it must be a real root of the characteristic equation:
$$ \det \left( A - \lambda \mathbb{1} \right) = 0 $$Remark
This is a polynomial equation of degree $n$ if $A$ is an $\left( n \cdot n \right)$ matrix.
Multiple of eigenvector solutions
Theorem
For any solution of eigenvectors $\overrightarrow{v}$ there is a multiple of the eigenvector $\alpha \in \mathbb{R}$ that still satisfies the equation:
$$ A \alpha \overrightarrow{v} = \lambda \alpha \overrightarrow{v} $$