Sequences
Upper bound
Definition
$B \in \mathbb{R}$ is an upper bound for $\{ a_n \}^{\infty}_{n=n_0}$ if $a_n \leq B$ for all $n \in \mathbb{R}$.
Lower bound
Definition
$B \in \mathbb{R}$ is an upper bound for $\{ a_n \}^{\infty}_{n=n_0}$ if $a_n \geq B$ for all $n \in \mathbb{R}$.
Supremum, least upper bound
Definition
$S \in \mathbb{R}$ is the supremum, for $\{ a_n \}^{\infty}_{n=n_0}$ if $S \leq B$ for all upper bounds $B$.
$$ S = \min \{ B \in \mathbb{R} | a_n \leq B, \forall n \in \mathbb{N} \} $$Infimum, greatest lower bound
Definition
$I \in \mathbb{R}$ is the infimum, for $\{ a_n \}^{\infty}_{n=n_0}$ if $I \geq B$ for all lower bounds $B$.
$$ I = \max \{ B \in \mathbb{R} | a_n \geq B, \forall n \in \mathbb{N} \} $$Convergent sequences
Theoreme
Convergent sequences are bounded.
Proof
Let $(s_n)_{n \in \mathbb{N}}$ be a converging sequence, and let $s =
\lim_{x\rightarrow \infty} s_n $.
Let us take $\varepsilon = 1$ and apply the definition of a limit. We
know that there exists $N$ such that $n > N \Rightarrow | s_n - s | < 1
$. Now by the triangle inequality $n > N \Rightarrow |s_n| < |s| + 1$
We can now define: $M := \max \{ |s|+1, |s_1|, \cdots , |s_N| \}$
This means $|s_n| \leq M$ for all $n \in \mathbb{N}$ and so $(s_n)$ is a
bounded sequence.
$\square$
Monotonic sequences
-
A sequence $\{ a_n \}^{\infty}_{n=n_0}$ is called monotone increasing if:
$$ a_{n+1} \geq a_n \quad \forall n \geq n_0 $$ -
A sequence $\{ a_n \}^{\infty}_{n=n_0}$ is called monotone decreasing if:
$$ a_{n+1} \leq a_n \quad \forall n \geq n_0 $$
Monotone Convergence Theorem
-
If \(\{a_n\}_{n=n_0}^\infty\) is a monotone increasing sequence, with supremum \(S\), then
\[ a_n \to S \] -
If \(\{a_n\}_{n=n_0}^\infty\) is a monotone decreasing sequence, with infimum \(I\), then
\[ a_n \to I \]
Proof
Since \(S\) is the supremum we have that \(|a_n - S| = S - a_n\) for all
\(n \in \mathbb{N}\). Now let \(\epsilon > 0\) and assume that \(S - a_n
\geq \epsilon\) for all \(n \in \mathbb{N}\). Then \(a_n \leq S -
\epsilon\) for all \(n \in \mathbb{N}\), that is, \(S - \epsilon\) is an
upper bound. This contradicts the fact that \(S\) is the supremum, so
there must be some \(N \in \mathbb{N}\) such that \(S - a_N <
\epsilon\).
Since \(a_n\) is monotone increasing \(a_n \geq a_N\) for all \(n \geq
N\). So \[|a_n - S| = S - a_n \leq S - a_N < \epsilon\] for all \(n \geq
N\).
Arithmetic mean - geometric mean inequality
Arithmetic mean - geometric mean inequality theorem
Let \(x_{1},\ldots,x_{n}\) satisfy \(x_{i}\geq 0\) for \(i=1,\ldots,n\). Then their geometric mean is at most their arithmetic mean:
\[ \sqrt[n]{x_{1}\cdot x_{2}\cdot\ldots\cdot x_{n}}\leq\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \]with equality if and only if \(x_{1}=x_{2}=\ldots=x_{n}\).
Proof
We will prove it by induction over \(n\geq 1\).
-
For \(n=1\): we get an equality
\[ x=\sqrt{x}=\frac{x}{1}=x \] -
Suppose its true for any \(n\)-tuple of non-negative numbers. Consider an \((n+1)\)-tuple \(x_{1},\ldots,x_{n+1}\) and let \(\alpha\) be their arithmetic mean, that is:
\[ \alpha=\frac{x_{1}+x_{2}+\ldots+x_{n+1}}{n+1} \]We now have
\[ (n+1)\alpha=x_{1}+\cdots+x_{n+1}=\sum_{k=1}^{n+1}x_{k} \]
Examining different cases:
-
One of the numbers is 0, that is there exists some \(i\) such that \(x_{i}=0\). The inequality here is obvious as one side is 0. And for the other side to also be 0 we need that \(x_{k}=0\) for \(k=1,\ldots,n+1\), so equality only occurs in the case when all terms are equal.
-
When we have \(x_{i}=\alpha\), \(i=1,\ldots,n+1\), then we get equality by a simple computation:
\[ \sum_{k=1}^{n+1}x_{k}=(n+1)\alpha \]so
\[ \frac{\sum_{k=1}^{n+1}x_{k}}{n+1}=\alpha \]and
\[ \sqrt[n+1]{x_{1}\cdot\ldots\cdot x_{n+1}}=\sqrt[n+1]{\alpha^{n+1}}=\alpha \] -
Everything else! That is \(x_{k}>0\) for \(k=1,\ldots,n+1\) and not all the terms are equal. In this case there is an \(x_{i}\) strictly greater than \(\alpha\) and one that is strictly smaller (otherwise \(\sum_{k=1}^{n+1}x_{k}\neq(n+1)\alpha\)). Up to reordering, let's suppose that these numbers are \(x_{n}\) and \(x_{n+1}\), that is: \(x_{n}>\alpha\) and \(x_{n+1}<\alpha\). In particular, \(x_{n}-\alpha>0\) and \(\alpha-x_{n+1}>0\) so we have
\[ (x_{n}-\alpha)(\alpha-x_{n+1})>0.\qquad(\star) \]We define a new real number \(y\) as
\[ y=x_{n}+x_{n+1}-\alpha\geq x_{n}-\alpha>0 \]now
\[ (n+1)\alpha=x_{1}+\cdots+\underbrace{x_{n}+x_{n+1}}_{y+\alpha}=x_{1}+\cdots+x_{n-1}+y+\alpha. \]so
$$ n \cdot \alpha = x_{1}+\cdots+x_{n-1}+y $$And thus \(\alpha\) is also the arithmetic mean of \(x_{1},\ldots,x_{n-1},y\).
\[ \underbrace{\frac{x_{1}+\cdots+x_{n-1}+y}{n}}_{\alpha} \geq \sqrt[n]{x_{1} \ldots x_{n-1}y} \]
By the induction hypothesis we haveand so
\[ \alpha^{n} \geq x_{1}\ldots x_{n-1}y \]now
\[ \alpha^{n+1} = \alpha^{n} \cdot \alpha \geq x_{1}\ldots x_{n-1}y\alpha \]But \(y = x_{n} + x_{n+1} - \alpha\) and so
$$ y \cdot \alpha - x_{n} \cdot x_{n+1} = (x_{n} + x_{n+1} - \alpha)\alpha - x_{n}x_{n+1} $$ $$= x_{n}\alpha + x_{n+1}\alpha - \alpha^{2} - x_{n}x_{n+1} $$ $$ = (\alpha - x_{n+1})(x_{n} - \alpha) > 0 $$by the inequality \((\star)\) above.
\[ \left(\frac{x_{1}+\cdots+x_{n+1}}{n+1}\right)^{n+1} > x_{1} \cdot \ldots \cdot x_{n+1} \]
We thus have that \(y \cdot \alpha > x_{n}x_{n+1}\).
In conclusion: \(\alpha^{n+1} > x_{1}\ldots x_{n-1} \cdot x_{n} \cdot x_{n+1}\), that is
as wanted. And that proves the theorem!
$\square$
Lemma
The sequences \((a_{n})_{n=1}^{\infty}\) and \((b_{n})_{n=2}^{\infty}\) have the following monotonicity properties:
\(a_{n+1} > a_{n}\) for \(n \geq 1\)
\(b_{n+1} < b_{n}\) for \(n \geq 2\)
Proofs
-
Let \(x_{1} = 1\), \(x_{2} = \ldots = x_{k} = \ldots = x_{n+1} = 1 + \frac{1}{n}\). We apply the AM-GM inequality to these numbers. Their arithmetic mean satisfies:
\[ \frac{1 + \left(1 + \frac{1}{n}\right) + \cdots + \left(1 + \frac{1}{n}\right)}{n+1} = \frac{n + 1 + n \cdot \frac{1}{n}}{n+1} = 1 + \frac{1}{n+1} \quad (\star\star) \]Their geometric mean is
\[ \sqrt[n+1]{x_{1} \ldots x_{n+1}} = \sqrt[n+1]{\left(1 + \frac{1}{n}\right)^{n}} \quad (\star\star\star) \]The \(x_{i}\)s are not all equal, so we know that \((\star\star) > (\star\star\star)\). From this:
\[ 1 + \frac{1}{n+1} > \sqrt[n+1]{\left(1 + \frac{1}{n}\right)^{n}} \]And so:
\[ a_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} > \left(1 + \frac{1}{n}\right)^{n} = a_{n} \] -
This case is very similar to what we just did. We set \(y_{1} = 1\) and \(y_{2} = y_{3} = \cdots = y_{n+1} = 1 - \frac{1}{n} > 0\). Then:
$$ \frac{\sum_{i=1}^{n+1} y_{i}}{n+1} = \frac{1 + n\left(1 - \frac{1}{n}\right)}{n+1} $$ $$ = \frac{1 + n - 1}{n+1} $$ $$ = 1 - \frac{1}{n+1} $$ $$ > \sqrt[n+1]{\left(1 - \frac{1}{n}\right)^{n}} $$by the arithmetic mean - geometric mean inequality applied to \(y_{1}, \ldots, y_{n+1}\). We deduce
\[ \left(1 - \frac{1}{n+1}\right)^{n+1} > \left(1 - \frac{1}{n}\right)^{n} \]By taking the inverse on both sides, we reverse the inequality and we get:
\[ b_{n+1} = \left(1 - \frac{1}{n+1}\right)^{-(n+1)} < \left(1 - \frac{1}{n}\right)^{-n} = b_{n} \]
as required.
$\square$
Lemma
For \(n \geq 2\):
\[ 0 < b_{n} - a_{n} < \frac{4}{n} \]Proof
We already know that \(b_{n} - a_{n} > 0\). Let's check the other inequality:
\[ b_{n} - a_{n} = b_{n}\left(1 - \frac{a_{n}}{b_{n}}\right) \]We have:
\[ a_{n} = \left(1 + \frac{1}{n}\right)^{n} = \left(\frac{n+1}{n}\right)^{n} \]and
\[ b_{n} = \left(1 - \frac{1}{n}\right)^{-n} = \left(\frac{n}{n-1}\right)^{n} \]so
$$ b_{n} - a_{n} = b_{n}\left(1 - \left(\frac{n+1}{n}\right)^{n}\left(\frac{n-1}{n}\right)^{n}\right) $$ $$ = b_{n}\left(1 - \left(\frac{n^{2}-1}{n^{2}}\right)^{n}\right) $$Set \(q = \frac{n^{2}-1}{n^{2}} < 1\). We have:
\[ b_{n} - a_{n} = b_{n}(1 - q^{n}) \]and so
\[ 1 - q^{n} = (1 - q)(1 + q + q^{2} + \cdots + q^{n-1}) \]As \(q < 1\), we also have that \(q^{k} < 1\) and we can deduce that
\[ 1 - q^{n} < (1 - q) \cdot n \]We've thus shown that
\[ b_{n} - a_{n} < b_{n}(1 - q) \cdot n \]Now as
\[ 1 - q = \left(1 - \frac{n^{2}-1}{n^{2}}\right) = \frac{n^{2} - (n^{2} - 1)}{n^{2}} = \frac{1}{n^{2}} \]and \(b_n\) is decreasing so \(b_n \leq b_2 = 4\). We can conclude:
\[ b_n - a_n < 4 \cdot \frac{1}{n^2} \cdot n = \frac{4}{n} \]$\square$
Squeeze theorem, Sandwhich theorem
Squeeze Theorem
If \((x_n)_{n=n_0}^{\infty}\), \((y_n)_{n=n_0}^{\infty}\) and \((z_n)_{n=n_0}^{\infty}\) are sequences that satisfy
\[ x_n \leq y_n \leq z_n \]and if
\[ \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = \ell \]for \(\ell \in \mathbb{R}\) then
\[ \lim_{n \to \infty} y_n = \ell. \]Euler's number
Definition
We define the real number \(e\) as the limit
\[ \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{-n} = e \]Approximating factorials
Theorem
For \(n \geq 2\) we have
\[ \frac{n^n}{e^{n-1}} < n! < n^n \]Proof
We have
\[ n! = n(n-1)(n-2)\dots 2\cdot 1 \quad \text{so} \quad n! < \underbrace{n \cdot n \dots n}_{n \text{ times}} = n^{n} \]Let us establish the second inequality. As \(e\) is the limit of an increasing sequence \(a_{k} = \left(1+\frac{1}{k}\right)^{k}\), we have that, for all \(k \geq 1\), \(e > a_{k} = \left(1+\frac{1}{k}\right)^{k}\). Thus
\[ e^{n-1} > \prod_{k=1}^{n-1}a_{k} (= a_{1} \cdot \dots \cdot a_{n-1}) \]and from this
\[ e^{n-1} > a_{1} \cdot a_{2} \cdots a_{n-1} = \left(\frac{2}{1}\right)^{1}\left(\frac{3}{2}\right)^{2}\left(\frac{4}{3}\right)^{3} \cdots \left(\frac{n}{n-1}\right)^{n-1} \]Many terms simplify through telescoping:
\[ a_{1} \cdot a_{2} \cdots a_{n-1} = \frac{n^{n-1}}{(n-1)!} = \frac{n^{n-1}}{(n-1)!} \cdot \frac{n}{n} = \frac{n^{n}}{n!} \]Therefore
\[ e^{n-1} > \frac{n^{n}}{n!} \quad \text{and} \quad n! > \frac{n^{n}}{e^{n-1}} \]This completes the proof.
$\square$
Stirlings formula theorem
\[ \lim_{n\to\infty} \frac{n!}{\left(\frac{n^{n}}{e^{n}}\right)\sqrt{2\pi n}} = 1 \]Proof
We will use the result of the previous theorem. We have
\[ n! \sim \left(\frac{n^{n}}{e^{n}}\right)\sqrt{2\pi n} \]Thus
\[ \frac{n!}{\left(\frac{n^{n}}{e^{n}}\right)\sqrt{2\pi n}} \to 1 \]as \(n \to \infty\).
$\square$