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Luxformel

Vectors and Matrices in Python Solutions

Exercise 1 – Vectors in ℝ7

Consider the following vectors:

𝑢 = (0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1), 𝑣 = (−1, −2, 1, −2, 3, 1, −5)

Using Python and NumPy:

1. Check whether 𝑢 and 𝑣 are unit vectors.

2. Compute the dot product of 𝑢 and 𝑣.

3. Determine if 𝑢 and 𝑣 are orthogonal.

import numpy as np

u = np.array([0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1])
v = np.array([-1, -2, 1, -2, 3, 1, -5])

# 1. Check if u and v are unit vectors
norm_u = np.linalg.norm(u)
norm_v = np.linalg.norm(v)
print(norm_u, norm_v)

# 2. Dot product
dot_uv = np.dot(u, v)
print(dot_uv)

# 3. Orthogonality
print(np.isclose(dot_uv, 0))
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Exercise 2 – Norms and Orthogonality

Consider the following vectors in ℝ9:

𝑢 = (1, 2, 5, 2, −3, 1, 2, 6, 2), 𝑣 = (−4, 3, −2, 2, 1, −3, 4, 1, −2), 𝑤 = (3, 3, −3, −1, 6, −1, 2, −5, −7)

Using Python:

1. Check which pairs of these vectors are orthogonal.

2. Calculate the Euclidean norm of 𝑢.

3. Calculate the infinity norm of 𝑤.

u = np.array([1, 2, 5, 2, -3, 1, 2, 6, 2]) v = np.array([-4, 3, -2, 2, 1, -3, 4, 1, -2]) w = np.array([3, 3,
-3, -1, 6, -1, 2, -5, -7])

# 1. Orthogonality
pairs = {'u·v': np.dot(u, v), 'u·w': np.dot(u, w), 'v·w': np.dot(v, w)}
print(pairs)

# 2. Euclidean norm of u
print(np.linalg.norm(u))

# 3. Infinity norm of w
print(np.linalg.norm(w, np.inf))

Exercise 3 – Matrix Operations

Consider the matrices:

𝐴 = (
2 −2
0 1

) , 𝐵 = (
3 1
6 2

) , 𝐶 =
⎛⎜⎜⎜
⎝

4 1 −1
2 5 −2
1 1 2

⎞⎟⎟⎟
⎠

, 𝐷 =
⎛⎜⎜⎜
⎝

−3 1 −1
−7 5 −1
−6 6 −2

⎞⎟⎟⎟
⎠

𝐸 =
⎛⎜⎜⎜
⎝

2
−1
3

⎞⎟⎟⎟
⎠

, 𝐹 = (−2 1 0) , 𝐺 = (
1 −1 0 0
1 4 0 0

)

Using Python:

1. Compute (if possible):
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• 𝐴 + 𝐵, 𝐵 − 𝐴, 𝐵 + 𝐶, 𝐴𝐵, 𝐵𝐴, 𝐵𝐺, 𝐶𝐸, 𝐸𝐹, 𝐹𝐸

2. Compute the transposes of 𝐴 and 𝐵 and then their product.
Observe and explain any property you find.

A = np.array([[2, -2], [0, 1]])
B = np.array([[3, 1], [6, 2]])
C = np.array([[4, 1, -1], [2, 5, -2], [1, 1, 2]])
D = np.array([[-3, 1, -1], [-7, 5, -1], [-6, 6, -2]])
E = np.array([[2], [-1], [3]])
F = np.array([[-2, 1, 0]])
G = np.array([[1, -1, 0, 0], [1, 4, 0, 0]])

# 1. Basic operations
print(A + B)
print(B - A)
print(np.dot(A, B))
print(np.dot(B, A))

# Some operations will raise shape errors (e.g. B + C), check compatibility before computing:
def try_op(func, *args):

try:
print(func(*args))

except ValueError as e:
print(f"Operation not possible: {e}")

try_op(np.add, B, C)
try_op(np.dot, B, G)
try_op(np.dot, C, E)
try_op(np.dot, E, F)
try_op(np.dot, F, E)

# 2. Transpose and product
AT, BT = A.T, B.T
print(np.dot(AT, BT))
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Exercise 4 – Matrix Rank and Norms

Consider the following matrices:

𝐴 =
⎛⎜⎜⎜
⎝

2 −2
−3 1
5 −3

⎞⎟⎟⎟
⎠

, 𝐵 =
⎛⎜⎜⎜
⎝

4 4 4
−2 3 −7
2 5 −7

⎞⎟⎟⎟
⎠

, 𝐶 =
⎛⎜⎜⎜
⎝

4 −1 2
−8 2 −4
2 1 −4

⎞⎟⎟⎟
⎠

Using Python:

1. Compute 𝐴𝑇𝐵 and 𝐶 + 𝐵.

2. Determine which of 𝐴, 𝐵, and 𝐶 are full rank.

3. Compute the Frobenius norm of 𝐶 and the spectral norm of 𝐴.

4. Attempt to compute the inverse of 𝐵.

A = np.array([[2, -2], [-3, 1], [5, -3]])
B = np.array([[4, 4, 4], [-2, 3, -7], [2, 5, -7]])
C = np.array([[4, -1, 2], [-8, 2, -4], [2, 1, -4]])

# 1. A^T B and C + B
print(A.T @ B)
print(C + B)

# 2. Rank
for name, M in {'A': A, 'B': B, 'C': C}.items():

print(f"rank({name}) =", np.linalg.matrix_rank(M))

# 3. Norms
frobenius_C = np.linalg.norm(C, 'fro')
spectral_A = np.linalg.norm(A, 2)
print(frobenius_C, spectral_A)

# 4. Inverse of B (if invertible)
try:

B_inv = np.linalg.inv(B)
print(B_inv)

except np.linalg.LinAlgError:
print("B is not invertible.")
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Exercise 5 – Determinants

Using the matrices from Exercise 3, and Python:

1. Compute det(𝐴), det(𝐵), and det(𝐴𝐵).

2. Compute det(𝐶) and det(𝐷).

A = np.array([[2, -2], [0, 1]])
B = np.array([[3, 1], [6, 2]])
C = np.array([[4, 1, -1], [2, 5, -2], [1, 1, 2]])
D = np.array([[-3, 1, -1], [-7, 5, -1], [-6, 6, -2]])

print(np.linalg.det(A))
print(np.linalg.det(B))
print(np.linalg.det(A @ B))
print(np.linalg.det(C))
print(np.linalg.det(D))

Exercise 6 – Inverses

Consider the matrices:

𝐴 = (
2 −1
4 3

) , 𝐵 = (
2 0
4 5

) , 𝐶 = (
6 −9

−4 6
) , 𝐷 =

⎛⎜⎜⎜
⎝

−1 6 2
0 1 0
3 0 −5

⎞⎟⎟⎟
⎠

Using Python, calculate (if possible) the inverses of 𝐴, 𝐵, 𝐶, and 𝐷.

A = np.array([[2, -1], [4, 3]])
B = np.array([[2, 0], [4, 5]])
C = np.array([[6, -9], [-4, 6]])
D = np.array([[-1, 6, 2], [0, 1, 0], [3, 0, -5]])

for name, M in {'A': A, 'B': B, 'C': C, 'D': D}.items():
try:

print(f"{name} inverse:\n", np.linalg.inv(M))
except np.linalg.LinAlgError:

print(f"{name} is not invertible.")

5



Solutions

Exercise 7 – Invertibility

Consider the matrix:

𝐴 =
⎛⎜⎜⎜⎜⎜⎜
⎝

2 2 3
−2 7 4
−3 −3 −4
−8 2 3

⎞⎟⎟⎟⎟⎟⎟
⎠

Using Python:

1. Add a column to 𝐴 to make it invertible.

2. Remove a row from 𝐴 to make it invertible.

3. Compute 𝐴𝐴𝑇 and check if it is invertible.

4. Compute 𝐴𝑇𝐴 and check if it is invertible.

A = np.array([[2, 2, 3],
[-2, 7, 4],
[-3, -3, -4],
[-8, 2, 3]])

# 1. Add a column (example: zeros)
A_aug = np.hstack([A, np.ones((4, 1))])
print("New A with extra column:\n", A_aug)

# 2. Remove a row (example: first row)
A_red = A[1:, :]
print("Reduced A:\n", A_red)

# 3. AA^T and 4. A^T A
AAT = A @ A.T
ATA = A.T @ A
print("AA^T invertible?", np.linalg.matrix_rank(AAT) == AAT.shape[0])
print("A^T A invertible?", np.linalg.matrix_rank(ATA) == ATA.shape[0])

Exercise 8 – Matrix Inversion and Systems of Equations

Using Python:
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1. Compute the inverse of

𝑀 =
⎛⎜⎜⎜
⎝

3 2 −1
1 −1 1
2 −4 5

⎞⎟⎟⎟
⎠

.

2. Use this inverse to solve the linear system:

⎧{{
⎨{{⎩

3𝑥 + 2𝑦 − 𝑧 = 5

𝑥 − 𝑦 + 𝑧 = 1

2𝑥 − 4𝑦 + 5𝑧 = −3

M = np.array([[3, 2, -1],
[1, -1, 1],
[2, -4, 5]])

b = np.array([5, 1, -3])

M_inv = np.linalg.inv(M)
print("M inverse:\n", M_inv)

# Solve using inverse
x = M_inv @ b
print("Solution:", x)

# Verify using numpy solver
print("Check:", np.allclose(M @ x, b))

Exercise 9 – Solving Linear Systems

Use Python to solve the following systems:

1.
⎧{{
⎨{{⎩

2𝑥 + 3𝑦 + 5𝑧 = 2

7𝑥 + 𝑧 = −1

−2𝑦 + 2𝑧 = 3

2.
⎧{{
⎨{{⎩

𝑥 + 2𝑦 − 𝑧 = 2

2𝑥 + 5𝑦 + 4𝑧 = 3

3𝑥 + 7𝑦 + 4𝑧 = 1

# 1st system
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A1 = np.array([[2, 3, 5],
[7, 0, 1],
[0, -2, 2]])

b1 = np.array([2, -1, 3])

x1 = np.linalg.solve(A1, b1)
print("System 1 solution:", x1)

# 2nd system
A2 = np.array([[1, 2, -1],

[2, 5, 4],
[3, 7, 4]])

b2 = np.array([2, 3, 1])

x2 = np.linalg.solve(A2, b2)
print("System 2 solution:", x2)

8


	Vectors and Matrices in Python Solutions
	Exercise 1 – Vectors in \mathbb{R}^7
	Exercise 2 – Norms and Orthogonality
	Exercise 3 – Matrix Operations
	Exercise 4 – Matrix Rank and Norms
	Exercise 5 – Determinants
	Exercise 6 – Inverses
	Exercise 7 – Invertibility
	Exercise 8 – Matrix Inversion and Systems of Equations
	Exercise 9 – Solving Linear Systems


