Solutions

Luxformel

Vectors and Matrices in Python Solutions

Exercise 1 — Vectors in R’

Consider the following vectors:

u = (0.5,0.4,0.4,0.5,0.1,0.4,0.1),

Using Python and NumPy:

1. Check whether v and v are unit vectors.
2. Compute the dot product of u and v.

3. Determine if u and v are orthogonal.

import numpy as np

v= (-1,

u = np.array([0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1])

np.array([-1, -2, 1, -2, 3, 1, -5])

1. Check 2f u and v are unit vectors
norm_u = np.linalg.norm(u)
norm_v = np.linalg.norm(v)

print (norm_u, norm_v)

2. Dot product
dot_uv = np.dot(u, v)
print(dot_uv)

3. Orthogonality
print(np.isclose(dot_uv, 0))

—2,1,

_2a37 17

—5)

Solutions

Exercise 2 — Norms and Orthogonality

Consider the following vectors in R:

U = (17275727_371727672)7 v = (_4737_272717_374717_2)7 w = (3737_37_1767_1727_57_7)

Using Python:

1. Check which pairs of these vectors are orthogonal.
2. Calculate the Euclidean norm of .

3. Calculate the infinity norm of w.

u = np.array([1, 2, 5, 2, -3, 1, 2, 6, 2]) v = np.array([-4, 3, -2, 2, 1, -3, 4, 1, -2]) w = np.array([3, 3,
-3,-1, 6, -1, 2, -5, -7])

1. Orthogonality
pairs = {'u-v': np.dot(u, v), 'u'w': np.dot(u, w), 'v-w': np.dot(v, w)}

print (pairs)

2. Euclidean morm of u

print(np.linalg.norm(u))

3. Infinity norm of w

print(np.linalg.norm(w, np.inf))

Exercise 3 — Matrix Operations

Consider the matrices:

5 5 3 1 4 1 -1 -3 1 -1
A= , B= , C=12 5 2|, D=|[-7 5 —1
0 1 6 2 1

1 2 —6 6 —2

Using Python:

1. Compute (if possible):

Solutions

« A+ B, B—A, B+C, AB, BA, BG, CE, EF, FE

2. Compute the transposes of A and B and then their product.
Observe and explain any property you find.

A = np.array([[2, -2], [0, 111)

B = np.array([[3, 1], [6, 2]])

C = np.array([[4, 1, -1], [2, 5, -2], [1, 1, 2]])

D = np.array([[-3, 1, -1, [-7, 5, -11, [-6, 6, -211)
E = np.array([[2], [-1], [311)

F = np.array([[-2, 1, 0]11)

G = np.array([[1, -1, 0, 0], [1, 4, 0, 011)

1. Basic operations

print(A + B)

print(B - A)

print(np.dot(A, B))
print(np.dot(B, A))

Some operations will raise shape errors (e.g. B + C), check compatibility before computing:
def try_op(func, *args):
try:
print (func(*args))
except ValueError as e:

print (f"Operation not possible: {e}")

try_op(np.add, B, C)
try_op(np.dot, B, G)
try_op(np.dot, C, E)
try_op(np.dot, E, F)
try_op(np.dot, F, E)

2. Transpose and product
AT, BT = A.T, B.T
print (np.dot (AT, BT))

Solutions

Exercise 4 — Matrix Rank and Norms

Consider the following matrices:

2 =2 4 4 4 4 -1 2
A=1-3 1|, B=|-23 -7, C=]-8 2 —4
5 —3 2 5 -7 2 1 —4

Using Python:

1. Compute A”B and C + B.
2. Determine which of A, B, and C are full rank.
3. Compute the Frobenius norm of C and the spectral norm of A.

4. Attempt to compute the inverse of B.

np.array([[2, -2]1, [-3, 11, [5, -311)
np.array([[4, 4, 41, [-2, 3, -71, [2, 5, -711)
= np.array([[4, -1, 2], [-8, 2, -41, [2, 1, -4]1])

Q
|

1. AT B and C + B
print(A.T @ B)
print(C + B)

2. Rank
for name, M in {'A': A, 'B': B, 'C': C}.items():

print (f"rank({name}) =", np.linalg.matrix_rank(M))
3. Norms

frobenius_C = np.linalg.norm(C, 'fro')
spectral_A = np.linalg.norm(A, 2)

print (frobenius_C, spectral_A)

4. Inverse of B (if invertible)
try:
B_inv = np.linalg.inv(B)
print(B_inv)
except np.linalg.LinAlgError:

print("B is not invertible.")

Solutions

Exercise 5 — Determinants

Using the matrices from Exercise 3, and Python:

1. Compute det(A), det(B), and det(AB).

2. Compute det(C') and det(D).

= np.array([[2, -2, [0, 111)

np.array([[3, 11, [6, 21]1)

= np.array([[4, 1, -1, [2, 5, -2], [1, 1, 21D

= np.array([[-3, 1, -1, [-7, 5, -11, [-6, 6, -2]11)

O Q W =
I

print(np.linalg.det(A))
print(np.linalg.det(B))
print(np.linalg.det(A @ B))
print(np.linalg.det(C))
print(np.linalg.det(D))

Exercise 6 — Inverses

Consider the matrices:

2 —1 2 0 6 —9 —he
A:(),B:<),C:(),D: 0 1 0
4 3 4 5 —4 6
3 0 =5
Using Python, calculate (if possible) the inverses of A, B, C, and D.

= np.array([[2, -1], [4, 31D)

= np.array([[2, 0], [4, 511)

= np.array([[6, -9], [-4, 6]1)

= np.array([[-1, 6, 2], [0, 1, O], [3, O, -5]1)

O Q W =
|

for name, M in {'A': A, 'B': B, 'C': C, 'D': D}.items():
try:
print (f"{name} inverse:\n", np.linalg.inv(M))
except np.linalg.LinAlgError:

print (f"{name} is not invertible.")

Solutions

Exercise 7 — Invertibility

Consider the matrix:

2 2 3

—2 4
A= ’

-3 -3 —4

-8 2 3

Using Python:

1. Add a column to A to make it invertible.
2. Remove a row from A to make it invertible.
3. Compute AAT and check if it is invertible.

4. Compute ATA and check if it is invertible.

A = np.array([[2, 2, 3],

[_2: 7: 4]3
[_3’ _33 _4]:
(-8, 2, 31D

1. Add a column (example: zeros)
A_aug = np.hstack([A, np.ones((4, 1))1)

print("New A with extra column:\n", A_aug)

2. Remove a row (example: first row)
A red = A[1:, :]
print ("Reduced A:\n", A_red)

3. AAT and 4. AT 4

AAT = A © A.T

ATA = AT C A

print ("AA"T invertible?", np.linalg.matrix_rank(AAT) == AAT.shapel[0])
print("AT A invertible?", np.linalg.matrix_rank(ATA) == ATA.shape[0])

Exercise 8 — Matrix Inversion and Systems of Equations

Using Python:

Solutions

1. Compute the inverse of

3 2 -1
M=1]11 -1 1
2 —4 5
2. Use this inverse to solve the linear system:
3x+2y—2=5
r—y+z=1

2¢ — 4y + 5z = —3

M = np.array([[3, 2, -1],
[1, -1, 11,
(2, -4, 51D

b = np.array([5, 1, -3])

M_inv = np.linalg.inv(M)

print ("M inverse:\n", M_inv)

Solve using inverse
x = M_inv @ b

print ("Solution:", x)

Verify using numpy solwver

print ("Check:", np.allclose(M @ x, b))

Exercise 9 — Solving Linear Systems

Use Python to solve the following systems:

1.
(22 + 3y + 52 =2
§7r+z=—1
(—2y +22=3
2
r+2y—z=2
12z +5y+42=3
3z +Ty+4z=1

1st system

Solutions

Al = np.array([[2, 3, 5],
(7, o, 11,
o, -2, 21D

bl = np.array([2, -1, 3])

x1 = np.linalg.solve(Al, bl)

print("System 1 solution:", x1)

2nd system
A2

np.array([[1, 2, -1],
[2, 5, 4],
(3, 7, 41D

b2 = np.array([2, 3, 11)

x2 = np.linalg.solve(A2, b2)
print("System 2 solution:", x2)

	Vectors and Matrices in Python Solutions
	Exercise 1 – Vectors in \mathbb{R}^7
	Exercise 2 – Norms and Orthogonality
	Exercise 3 – Matrix Operations
	Exercise 4 – Matrix Rank and Norms
	Exercise 5 – Determinants
	Exercise 6 – Inverses
	Exercise 7 – Invertibility
	Exercise 8 – Matrix Inversion and Systems of Equations
	Exercise 9 – Solving Linear Systems

