

Exercise 1: Double Additive Inverse

Prove that $-(-v) = v$ for every $v \in V$, where V is a vector space.

Let V be some vector space over some field. By the vector space axioms, we have:

1. For every $v \in V$ there exists an additive inverse $-v$ such that:

$$v + (-v) = 0$$

Where $-v$ belongs to V ; closure under addition.

2. Additive inverses are unique

Fix $v \in V$ such that $v + (-v) = 0$. By commutativity of addition, we get:

$$(-v) + v = 0$$

Now v is the additive inverse of $(-v)$. By uniqueness of additive inverses, the additive inverse of $(-v)$ is $-(-v)$, meaning:

$$-(-v) = v.$$

□

Exercise 2: Zero Product Property

Suppose $a \in \mathbb{F}$ (a field), $v \in V$, and $av = 0$. Prove that $a = 0$ or $v = 0$.

Let $a \in \mathbb{F}$ and $v \in V$:

If $a = 0$, then $a \cdot v = 0$, trivial case.

If $a \neq 0$, then there exists $a^{-1} \neq 0$, then.

$$a^{-1}(a \cdot v) = 0 \Leftrightarrow a^{-1} \cdot 0 = 0$$

But $a^{-1} \neq 0$, therefore $v = 0$.

□

Exercise 3: Unique Solution to Vector Equation

Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that $v + 3x = w$.

We have: $v + 3x = w$

$$\Leftrightarrow v - w = 3x$$

Since on the left hand side we only have vector addition (subtraction) this vector exists in V .

Furthermore on the right hand side we only have scalar multiplication which also creates a valid vector in V .

Thus there must be some x which satisfies this condition.

□

Exercise 4: Alternative Axiom for Additive Inverses

Show that in the definition of a vector space, the additive inverse condition can be replaced with:

$$0v = 0 \text{ for all } v \in V$$

(where left 0 \mathbb{F} , right 0 V).

In any scalar field \mathbb{F} we have:

$$1 + (-1) = 0$$

with vector multiplication:

$$v(1 + (-1)) = 0 \cdot v$$

by distributivity:

$$1v + (-1)v = 0 \cdot v$$

By assumption $0 \cdot v = 0$, thus:

$$v + (-1) \cdot v = 0$$

Which is the additive inverse property, thus with the assumption it is possible to replace the additive inverse.

Exercise 5: Extended Real Numbers as a Vector Space?

Define **addition** and **scalar multiplication** on $\mathbb{R}^* = \mathbb{R} \cup \{\infty, -\infty\}$ as follows:

For $t \in \mathbb{R}$:

$$t \cdot \infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \quad t \cdot (-\infty) = (\text{analogous})$$

For $t \in \mathbb{R}$:

$$t + \infty = \infty + t = \infty, \quad \infty + \infty = \infty, \quad \infty + (-\infty) = 0.$$

Is \mathbb{R}^* a vector space over \mathbb{R} ? Justify.

Not a vector space because the distributivity property fails.

Counterexample: let $t, s \in \mathbb{R}$ and $v \in \mathbb{R}^*$

where: $t = -1$ and $s = 2$ and $v = +\infty$

Distributivity: $(s+t) \cdot v = (2+(-1)) \cdot v = 1 \cdot (+\infty)$

but:

$$(s+t) \cdot v = s \cdot v + t \cdot v = 2 \cdot (+\infty) + (-1) \cdot (+\infty) = +\infty - \infty = 0$$

Thus \mathbb{R}^* is not a vector space over \mathbb{R} .