
Aufgabe 3-1

Gegeben sei die abgebildete Diodenkennlinie: $I_F = f(U_F)$

a) Die Diode liegt in Reihe mit einem Widerstand $R=26\Omega$ an einer Spannung $U_B=2,6V$. Trage die Arbeitsgerade in das Diagramm ein und bestimme grafisch den Arbeitspunkt A_1 der Reihenschaltung. Ermittle die Stromstärke sowie die Teilspannungen an Diode und Widerstand.

Ablesen von Arbeitspunkt:
$$U_{\mp} = 1.2V$$

$$I_{\pm} = 53mA$$

b) Wie verändert sich die Lage des Arbeitspunktes, wenn die Betriebsspannung auf $U_B = 2V$ verringert wird (R ändert nicht)?

Trage die neue Arbeitsgerade ein und ermittle die zugehörigen Werte im neuen Arbeitspunkt A₂.

$$T_{Fmax} = \frac{V_B}{R_A} = \frac{2V}{26J_L} = \frac{0.0769 \, A}{26J_L}$$
Arbeits gerade: $\left[0; T_{Fmax}\right] \text{ und } \left(V_B; 0\right)$

$$\left(0; 77 \text{ mA}\right) \text{ und } \left(2V; 0\right)$$
Ablesen von Arbeitspunht. $V_F = 1.07 \, V$

c) Wie verändert sich die Lage des Arbeitspunktes, wenn bei U_B = 2V der Wert des Widerstandes auf R = 50Ω verändert wird?

 $T_{p} = 36 \text{ mH}$

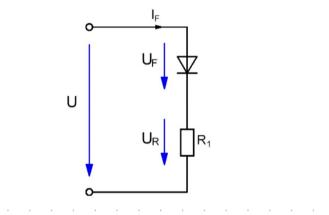
Trage die neue Arbeitsgerade ein und ermittle die zugehörigen Werte im neuen Arbeitspunkt A₃.

$$I_{Fmax} = \frac{U_B}{R_1} = \frac{2V}{SOJZ} = 0.04A$$
Arbeits gerade: $(0; I_{Fmax})$ and $(U_B; 0)$

$$Also: (0; HomA) \text{ and } (2V; 0)$$
Ablesen von Arbeitspunkt: $V_F = 0.92V$

$$I_F = 21mA$$

d) Wie verändert sich die Lage des Arbeitspunktes, wenn bei U_B = 20V der Wert des Widerstandes auf R = 200 Ω verändert wird?


Trage die neue Arbeitsgerade ein und ermittle die zugehörigen Werte im neuen Arbeitspunkt A₄.

$$I_{\text{Fmax}} = \frac{V_{\text{B}}}{R_{\text{A}}} = \frac{20V}{200 \cdot 2} = \frac{0.14}{100 \cdot 2}$$

Arbeitsgera de:
$$(I_{fmax}; 0)$$
 und $(0; U_R)$
 $(100 \text{mA}; 0)$ und $(0; 20V)$
Um zu zeichnen wird ein Punkt benötigt der zu der Gerade gehört.
Für $1V$: $I_F = -\frac{1}{2002} \cdot 1V + \frac{20V}{2002} = \frac{95 \text{ mA}}{25002} = \frac{95 \text{ mA}}{25002} = \frac{114V}{1}$
Ablesen von Arbeitspunkt: $V_F = 1.4V$
 $I_F = 93 \text{ mA}$

Aufgabe 3-2

Ermittle rechnerisch die Stromstärke und die Teilspannungen am Widerstand und an der Diode.

Maschengleichung:

$$R_1 = 20\Omega$$

$$r_F = 2,5\Omega$$

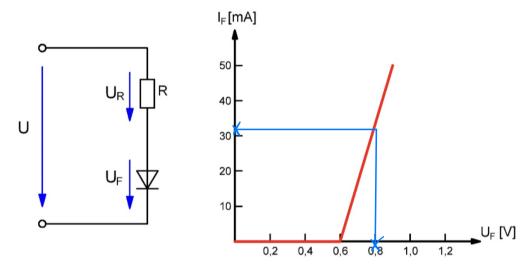
$$U_{S} = 0.6V$$

Stromstärke:

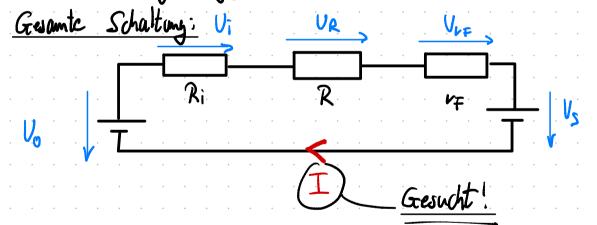
$$=\frac{1.5V-0.6V}{20.12+2.5.2}$$

Teilspannungen:

$$V_{F} = r_{F} \cdot I \qquad V_{A} = R_{A} \cdot I$$


$$= 2.5 \cdot 2.0044 \qquad = 20 \cdot 2.0044$$

$$=0.1$$


Aufgabe 3-3

An die Reihenschaltung einer Diode mit einem Widerstand R = 33Ω wird eine Gleichspannungsquelle angeschlossen. Die Spannungsquelle hat eine Leerlaufspannung $U_0 = 1,6V$ und einen Kurzschlussstrom $I_K = 80$ mA.

Wie groß ist der Strom, der durch die Schaltung fließt?

Als erstes muss die Spannungsquelk untersucht werden denn danach wird die Maschengleichung benutzt:

Innonwiderstand der Spannungsquelle:

Es gilt:
$$R_i = \frac{V_0}{I_N}$$

$$= \frac{1.6V}{0.08A}$$

$$= 20 D$$

Aus Kennlinie mit Steigung Dx

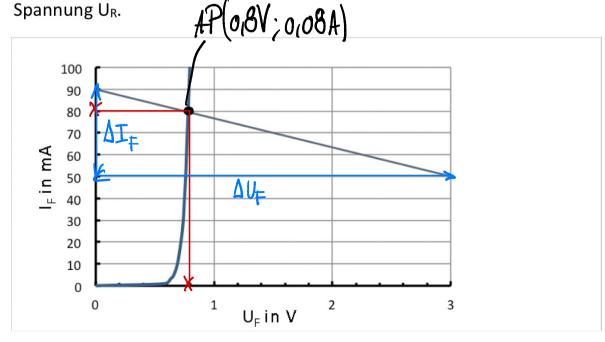
Ableson:
$$\Delta U_F = 0.2V$$
 and $I_F = 33 \text{ mA}$

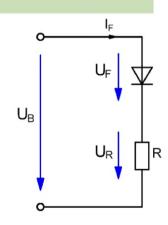
Also:
$$v_F = \frac{v_F}{I_F} = \frac{0.2V}{0.033A} = \frac{6.06 \Omega}{1.00}$$

Marchen sleichung:

$$V_0 - V_5 - V_{rF} - V_R - V_i = 0$$

$$= \frac{V_0 - V_S}{V_F + R + R_i}$$


$$= \frac{1.6V - 0.6V}{6.06 \Omega + 33 \Omega + 20 \Omega}$$


$$= 16,33 \text{ mA}$$

Aufgabe 3-4

Eine Si-Diode wird in Reihe mit einem Widerstand R an der Betriebsspannung U_B betrieben. Dabei ergibt sich der in der abgebildeten Kennlinie eingezeichnete Arbeitspunkt AP.

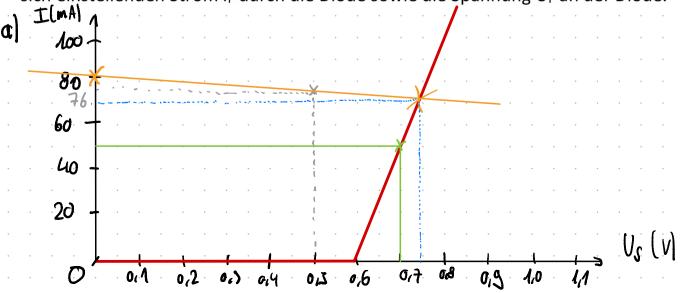
Bestimme die Betriebsspannung U_B, den Wert von R so wie die

Die Steisung der Geraden entspricht:
$$-\frac{1}{R}$$

Betrag: $\frac{1}{R} = \frac{AI_F}{AU_F} \implies R = \frac{\Delta U_F}{\Delta I_F}$
 $= \frac{3V}{0.04A}$

Am Arbeits punkt sit: $V_F = 0.8V$; $I_F = 0.08A$

Es folst: $V_R = R \cdot I_F = 75\Omega \cdot 0.08A$
 $= 6V$


Nach Maschenvesel: $V_R = V_F + V_2$

a) Zeichne die idealisierte Durchlasskennlinie einer Diode mit der Schleusenspannung $U_S=0,6V \text{ und dem differentiellen Ersatzwiderstand } r_F=2\Omega. \text{ Die Achseneinteilung soll von } 0 \dots 1V \text{ und von } 0 \dots 100\text{mA reichen.}$

= 0.8V + 6V

= 6,87

b) Diese Diode wird in Durchlassrichtung über einen Vorwiderstand $R_V = 150\Omega$ an eine Betriebsspannung $U_B = 12V$ angeschlossen. Bestimme zeichnerisch (oder rechnerisch) den sich einstellenden Strom I_F durch die Diode sowie die Spannung U_F an der Diode.

Für Grofik:
$$v_F = \frac{AV_F}{AI_F} \iff AI_F = \frac{AV_F}{v_F}$$

$$= \frac{0.1V}{2.52}$$

$$= 50 \text{ mA}$$

b) Arbeitsquade:
$$(0; I_{Frax})$$
 and $(V_{B}; 0)$

also $\cdot I_{Frax} = \frac{V_{Brax}}{R_V}$ and $(V_{B}; 0)$

$$= \frac{12V}{150 - 2}$$

$$= 80mA$$

Da wir den Punkt (UB;0) nicht einzeichnen können musen wir einen Punkt auswählen der zur Gerade gehört.

Formel:
$$I_{F} = -\frac{1}{R_{1}} \cdot U_{F} + \frac{UB}{R}$$

$$\overline{Far} \quad o_{i}SV : I_{F} = -\frac{1}{150 \Omega} \cdot o_{i}SV + \frac{12V}{150 \Omega}$$

$$= 76 \text{ m f}$$

Arbeitspunkt: ableson: (0,75V; 70mA)